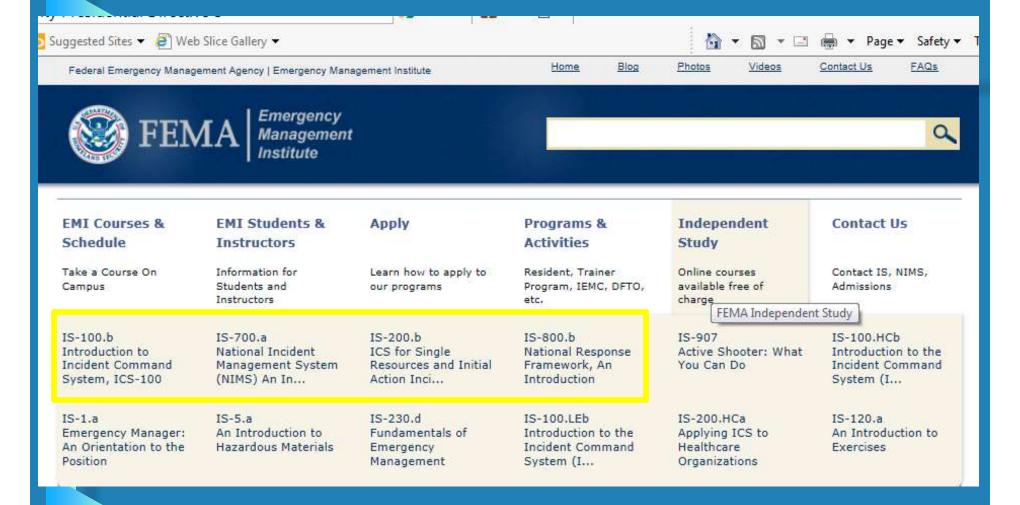


OBJECTIVES

- **A Identify the main purposes of ICS**
- ର Identify the major benefits of ICS
- **A List the five functions of ICS**
- **A quick introduction of the Incident Management System (for now)**


"HAZWOPER" REGULATION STATES:

ICS is required by law if an emergency response is made to a situation involving hazardous materials

Homeland Security Presidential Directive 8

- National Response Framework
 (NRF)
- National Incident Response System (NIMS)
 - ICS

http://training.fema.gov/is/crslist.aspx

ICS Features: Overview

- Standardization
 - Common terminology
- Command
 - Establishment and transfer of command
 - Chain of command and unity of command
 - Unified command
- Planning/Organizational Structure
 - Management by objectives
 - Incident Action Plan (IAP)
 - Modular organization
 - Manageable span of control

- Facilities and Resources
 - Comprehensive resource management
 - Incident locations and facilities
- Communications/Information Management
 - Integrated communications
 - Information and intelligence management
- Professionalism
 - Accountability
 - Dispatch/Deployment

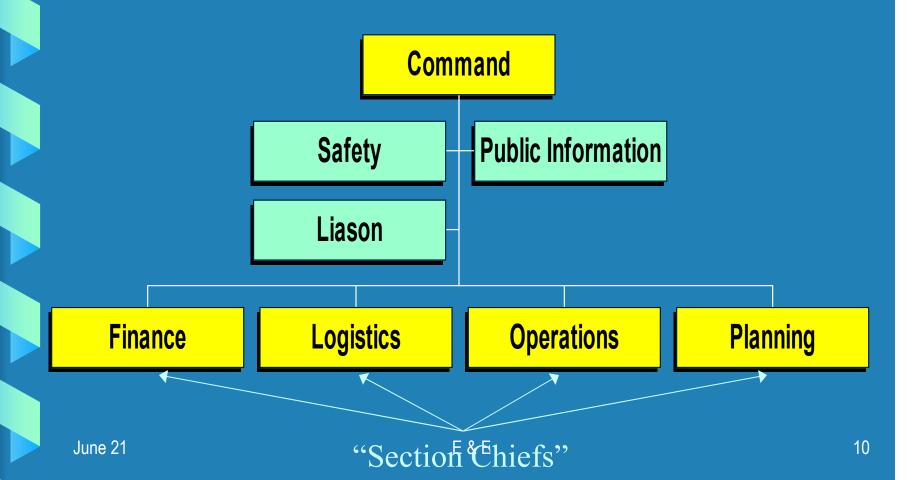
PURPOSES OF ICS

ନ୍ To insure safety

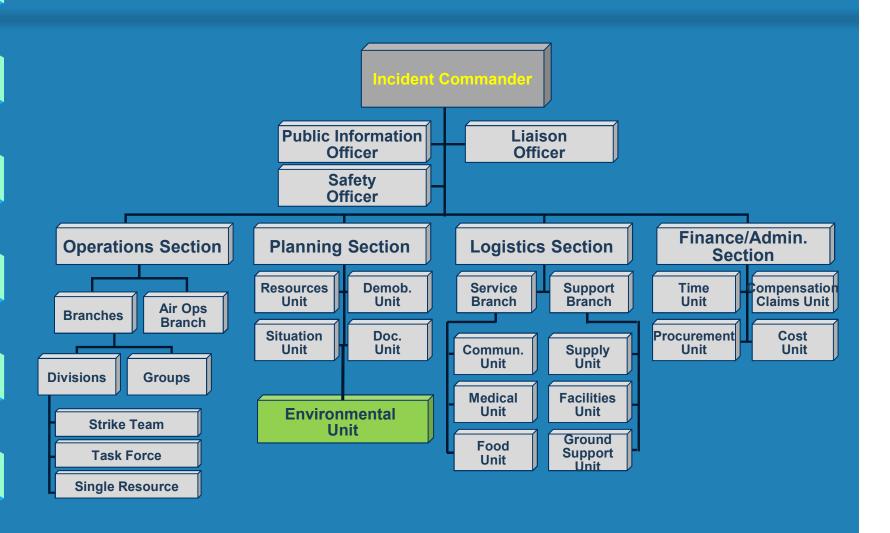
- ନ୍ To define responsibilities
 - Insure that someone is always in charge

A To efficiently use resources

BENEFITS OF ICS


O Uses standard terminology

- Modular design, expands as incident grows, contracts as incident comes under control
- **Our Designed to be flexible but consistent**
 - local, state or federal response


BENEFITS OF ICS (CONT)

- ନ୍ତ Manageable span-of-control *(5:1)*
- ର Comprehensive resource management
 - Unity of effort, maximize efficiency
- ନ୍ Consolidated Incident Action Plans

5 FUNCTIONS OF ICS

ICS Organization: Review

ICS Small Incident/Emergency

Incident Command/Operations

(Safety, P10, Planning, Logistics, and Financial/Admin)

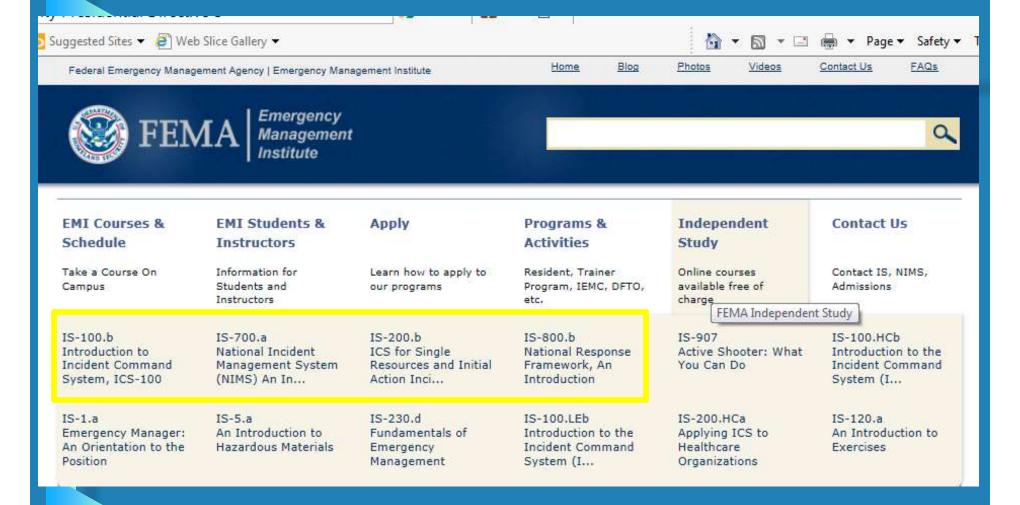
Crew Leader Team

COMMAND FUNCTION

- ୍ଦ Central responsibility & accountability for response operations
- **Provide a central place for communications**
- **A Formulate objectives, priorities, etc**
- **ର Assign roles**
- **OCCUPATION OF ACTIONS OF OTHER FUNCTIONS**

COMMAND FUNCTION

- **Retains all positions until delegated to someone**
- **Also Safety until delegated to someone!!**
- ର Needs to maintain the 1:5 span of control
- **Nust be in a fixed location**


OPERATIONS FUNCTION

- **A** The groups doing the work
- ନ୍ତ Group leaders and teams as needed
- **ର Deploying equipment**
- **⊘** Fighting fires/EMS/Clean-up Crew/Evacuation crews
- **A** Mitigating the incident
- ନ Providing current information IC

Incident Command System

- **A** That is enough for a small incident
- ନ୍ନ There is a lot more to building a good ICS
- **Everyone must know the system, including administrative and non-emergency leadership**
- Must be formally accepted by all local, state, private, and Federal agencies involved in emergency response activity

http://training.fema.gov/is/crslist.aspx

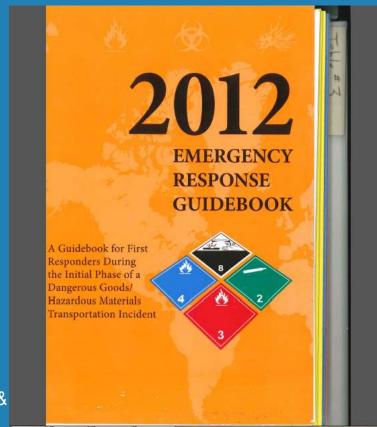
FEMA Online Programs

ର IS-700

ର IS-800

ର **IS-100**

∂ IS-200


ନ୍ IS-300 Classroom

ର IS-400 Classroom

2012

EMERGENCY RESPONSE GUIDEBOOK

√iew

Favorites Tools Help

2 PHMSA

U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

Careers | Contact Us | FAQs | Site Map

Go

Advanced Search

For the Public

Hazmat Safety Community Pipeline Safety Community

Briefing Room

Doing Business with PHMSA

- **About Us**
- Calendar
- Contact Us
- Data & Statistics
- Electronic Services
- Field Operations
- Grants
- Hazardous Materials Information Center
- Incident Reporting
- International Standards
- Interpretations
- Library
- NTSB Safety Recommendations
- Registration
- Regulations
- Risk Management
- Safety Advisory Notices
- Security
- Special Permits & Approvals
- Training & Outreach

Home

About PHMSA

- Mission and Goals
- About the Agency
- Key Officials

Home » Hazmat Safety Community » Training & Outreach

Emergency Response Guidebook (ERG)

Overview

Quickly Identify Hazmat Emergency Procedures

PHMSA's 2012 Emergency Response Guidebook provides first responders with a go-to manual to help deal with hazmat accidents during the critical first 30 minutes, DOT's goal is to place an ERG in every emergency service vehicle nationwide.

To date, nearly 11 million free copies have been distributed to the emergency response community through state emergency management coordinators, Members of the public may purchase a copy of the ERG through the GPO Bookstore and other commercial suppliers.

First responders, we want your feedback! Submit your name, organization, contact information, and comments to ERG2012@dot.gov.

In This Article:

- Overview
- Before an Emergency
- State Coordinators
- Argonne National Laboratory Report
- ERG Data Files (English)
- ERG Data Files (Spanish)
- Emergency Response Guidebook (ERG) Training Presentations

Related Downloads:

- Current ERG (PDF)
- ERG2012 Software for Windows XP/Vista/7
- ERG2012 Mobile Apps Press Release
- FRG2012 Press Release
- 2012 Summary of Changes from ERG2008
- · CORRECTIONS (list of changes to the current ERG)
- Commercial Suppliers List (PDF)
- Current Spanish ERG (PDF)
- Argonne National Laboratory Report (PDF)

Related Links:

- ERG Mobile App
- · National Library of Medicine's WISER (Wireless Information

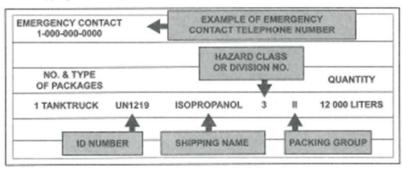
ERG 2012 Background Info

- **8** Formerly the DOT Guidebook
- **New edition every four years**
- **Designed for people trained to the <u>Awareness</u> <u>Level</u> (pages 2-3)**
- **OUSED TO DEFENSIVE ACTIONS ONLY**
- *Q* Provides general response guidelines based on chemical hazard characteristics
- **Not chemical-specific- Classes of Chemicals**

Shipping Documents (inside cover)

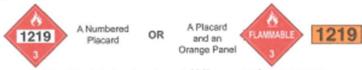
- **A Required for most hazmat in transportation**
- **O Contain vital info for first responders**
 - Emergency contact phone number
 - Shipping Name, UN 4- digit ID Number
 - Hazard Class / Division and Packing Group
 - Number / type of packages, Total quantity
- ର Note placard examples

SHIPPING DOCUMENTS (PAPERS)


Shipping Documents (Papers) are synonymous and can be found as follows:

- · Road kept in the cab of a motor vehicle
- Rail kept in possession of a crew member
- Aviation kept in possession of the aircraft pilot
- Marine kept in a holder on the bridge of a vessel

Shipping Documents (Papers) provide vital information regarding the hazardous materials/dangerous goods to initiate protective actions*


Information provided:

- 4-Digit Identification Number, UN or NA (go to Yellow Pages) **
- · Proper Shipping name (go to Blue Pages)
- · Hazard Class or Division number of material
- Packing Group
- · Emergency Response Telephone Number
- Information describing the hazards of the material (entered on or attached to shipping document)

EXAMPLE OF PLACARD AND PANEL WITH ID NUMBER

The 4-digit ID Number may be shown on the diamond-shaped placard or on an adjacent orange panel displayed on the ends and sides of a cargo tank, vehicle or rail car.

For the purposes of this guidebook, the terms hazardous materials/dangerous goods are synonymous.
"After January 1, 2013 in the United States, the identification number must appear first in the besic description.
For example, "UN2744, Cyclobutyl chicyoformate, 6.1, (3, 8), PG II". This is currently optional in Canada.

Shipping Papers

E & E 23

How To Use This Guidebook (White page 1)

- **Identify the material**
- Look up the 3-digit Guide Number
 - 4 digit ID Number Index (Yellow pages)
 - Alphabetical Name Index (Blue pages)
 - Explosives List (p. 1)
 - Table of Placards (p. 6-7)
 - If no info available, use Guide # 111
 - **Q** "P" suffix may violently polymerize
- **Name of the Example 2** Highlighted Look in Green pages

How to Use This Guidebook

(continued)

- **Read the Numbered Guide (Orange pages)**
 - Read all sections before responding
- Read the "Table of Initial Isolation and Protective Action Distances" (Green pages) if indicated
- ନ୍ Follow Safety Precautions (White page 2)
- **Q** Call for assistance (White pages 392)

DOT Hazard Classification System

(White page 4)

- A Hazard Classes are identified by a Class (or Division) number and name
- Nehicles transporting hazmat must display placards corresponding to the hazard classes of the materials
- **The Primary Hazard placard includes the class/division number; Secondary Hazard placards do not**

DOT Hazard Classes

- ର Class 1 Explosives
 - 6 Divisions
- - 3 Divisions
- **Q Class 3 Flammable Liquids**
- **O Class 4 Flammable Solids**
 - 3 Divisions

- **O Class 5 Oxidizers**
 - 2 Divisions
- **8 Class 6 Toxics**
 - 2 Divisions
- **Q Class 7 Radioactive Material**
- **8 Class 8 Corrosives**
- ର Class 9 Miscellaneous

DOT Placards

EXAMPLE OF PLACARD AND PANEL WITH ID NUMBER

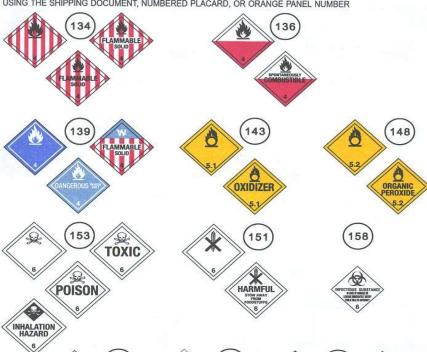
The 4-digit ID Number may be shown on the diamond-shaped placard or on an adjacent orange panel displayed on the ends and sides of a cargo tank, vehicle or rail car.

A Numbered Placard

or

A Placard and an Orange Panel

able of Placards (White pages 6-7)


TABLE OF PLACARDS AND INITIAL USE THIS TABLE ONLY IF MATERIALS CANNOT BE SPECIFICALLY IDENTIFIED BY (111 DANGER DANGEROUS EXPLOSIVES EXPLOSIVES EXPLOSIVES 114 EXPLOSIVES 112 (112 125 1.5 EXPLOSIVES 121 123 118 POISON GAS INHALATION HAZARD 122 127 128 FLAMMABLI FUEL OIL OXYGEN

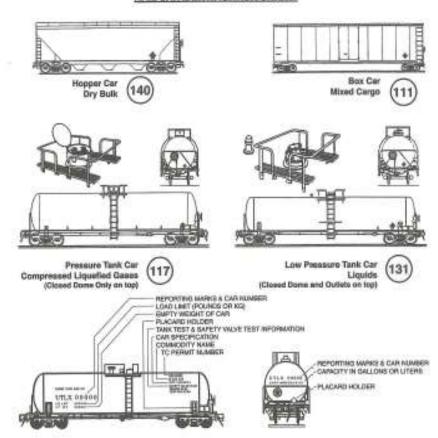
RESPONSE GUIDES TO USE ON-SCENE

163

RADIOACTIVE

USING THE SHIPPING DOCUMENT, NUMBERED PLACARD, OR ORANGE PANEL NUMBER

153



To be

As you respond to a highway accident, you notice there is no placard number and no visible markings on the over-turned trailer. The driver cannot be found, or doesn't have the proper shipping papers.

Where in the ERG can you find information for this situation? And what guide number would you use for a MC-338 Cryogenic Liquid tank?

RAIL CAR IDENTIFICATION CHART*

CAUTION: Emergency response personnel must be aware that rail tank cars vary widely in construction, fittings and purpose. Tank cars could transport products that may be solids, liquids or gases. The products may be under pressure. It is essential that products be identified by consulting shipping documents or train consist or contacting dispatch centers before emergency response is initiated.

The information stenciled on the sides or ends of tank cars, as illustrated above, may be used to identify the product utilizing:

- a. the commodity name shown; or
- the other information shown, especially reporting marks and car number which, when supplied to a dispatch center, will facilitate the identification of the product.
- * The recommended guides should be considered as last resort if the material cannot be identified by any other means.

ROAD TRAILER IDENTIFICATION CHART* MC338, TC338, SCT-338 DOT405, TC406, SCT-306 131 Non-pressure Liquid Tank Cryogenic Liquid Tank (TC341, CGA341) (MC306, TC305) DOT407, TC407, SCT-907 Compressed Gas/ 137 Law Pressure Chemical Tank **Tube Trailer** (MC307, TC307) DOT412, TC412, SCT-312 Dry Bulk Cargo 137 Corrosive Liquid Tank Trailer (MCS12, TC312) MC331, TC3S1, SCT-331 Mixed Cargo (111 High Pressure Tank DOT407, TC407, DOT412, TC412 (117 Intermodal Yank Vacuum Loaded Tank (TC350) CAUTION: This chart depicts only the most general shapes of road trailers. Emergency

CAUTION: This chart depicts only the most general shapes of road trailers. Emergency response personnel must be aware that there are many variations of road trailers, not illustrated above, that are used for shipping chemical products. The suggested guides are for the most hazardous products that may be transported in these trailer types.

 The recommended guides should be considered as last resort if the material cannot be identified by any other means.

What does the 33 and 1203 stand for and where can you find this?

HAZARD IDENTIFICATION CODES DISPLAYED ON SOME INTERMODAL CONTAINERS

Hazard identification codes, referred to as "hazard identification numbers" under European and some South American regulations, may be found in the top half of an orange panel on some intermodal bulk containers. The 4-digit identification number is in the bottom half of the orange panel.

The hazard identification code in the top half of the orange panel consists of two or three figures. In general, the figures indicate the following hazards:

- 2 EMISSION OF GAS DUE TO PRESSURE OR CHEMICAL REACTION
- 3 FLAMMABILITY OF LIQUIDS (VAPORS) AND GASES OR SELF-HEATING LIQUID
- 4 FLAMMABILITY OF SOLIDS OR SELF-HEATING SOLID
- 5 OXIDIZING (FIRE-INTENSIFYING) EFFECT
- 6 TOXICITY OR RISK OF INFECTION
- 7 RADIOACTIVITY
- 8 CORROSIVITY
- 9 RISK OF SPONTANEOUS VIOLENT REACTION
- Doubling of a figure indicates an intensification of that particular hazard (i.e. 33, 66, 88).
- Where the hazard associated with a material can be adequately indicated by a single figure, the figure is followed by a zero (i.e. 30, 40, 50).
- A hazard identification code prefixed by the letter "X" indicates that the material will react dangerously with water (i.e. X88).

While responding to a highway accident, you notice a placard with the number 2618 on an involved tanker

Where would you look in the ERG 2012 to identify the contents of the tanker?

ID Number Index (Yellow pages)

ID No.	Guid No.		1	Guid No.	
2599	126	Chlorotrifluoromethane and Trifluoromethane azeotropic mixture with approximately 60% Chlorotrifluoromethane	2602	126	Refrigerant gas R-12 and Refrigerant gas R-152a azeotropic mixture with 74% Refrigerant gas R-12
2599	126	Refrigerant gas R-13 and Refrigerant gas R-23 azeotropic mixture with 60% Refrigerant gas R-13	2602	126	Refrigerant gas R-152a and Refrigerant gas R-12 azeotropic mixture with 74% Refrigerant gas R-12
2599	126	Refrigerant gas R-23 and Refrigerant gas R-13 azeotropic mixture with 60% Refrigerant gas R-13	2602	126	Refrigerant gas R-500 (azeotropic mixture of Refrigerant gas R-12 and Refrigerant gas R-152a with
2599	126	Refrigerant gas R-503 (azeotropic mixture of Refrigerant gas R-13 and Refrigerant gas R-23 with approximately 60% Refrigerant gas R-13)			approximately 74% Refrigerant gas R-12)
			2603	131	Cycloheptatriene
			2604	132	Boron trifluoride diethyl ethera
			2605	155	Methoxymethyl isocyanate
2599	126	Trifluoromethane and	2606	155	Methyl orthosilicate
		Chlorotrifluoromethane	2607	129P	Acrolein dimer, stabilized
		azeotropic mixture with approximately 60%	2608	129	Nitropropanes
		Chlorotrifluoromethane	2609	156	Triallyl borate
2600	119	Carbon monoxide and Hydrogen mixture	2610	132	Triallylamine
			2611	131	Propylene chlorohydrin
2600	119	Carbon monoxide and Hydrogen	2612	127	Methyl propyl ether
0000	440	mixture, compressed	2614	129	Methallyl alcohol
2600	119	Hydrogen and Carbon monoxide mixture	2615	127	Ethyl propyl ether
2600	119	Hydrogen and Carbon monoxide mixture, compressed	2616	129	Triisopropyl borate
			2617	129	Methylcyclohexanols
2601	115	Cyclobutane	2618	130F	Vinyltoluenes, inhibited
2602	126	Dichlorodifluoromethane and	2619	132	Benzyldimethylamine

Numbered Guide (Orange pages)

GUIDE 130 FLAMMABLE LIQUIDS
(Non-Polar/Water-Immiscible/Noxious)

NAERG96

NAERG96

FLAMMABLE LIQUIDS (Non-Polar/Water-Immiscible/Noxious)

GUIDE 130

POTENTIAL HAZARDS

FIRE OR EXPLOSION

- HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames.
- · Vapors may form explosive mixtures with air.
- · Vapors may travel to source of ignition and flash back.
- Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks).
- Vapor explosion hazard indoors, outdoors or in sewers.
- · Some may polymerize (P) explosively when heated or involved in a fire.
- Runoff to sewer may create fire or explosion hazard.
- Containers may explode when heated.
- · Many liquids are lighter than water.

HEALTH

- May cause toxic effects if inhaled or absorbed through skin.
- · Inhalation or contact with material may irritate or burn skin and eyes.
- Fire will produce irritating, corrosive and/or toxic gases.
- · Vapors may cause dizziness or suffocation.
- Runoff from fire control or dilution water may cause pollution.

PUBLIC SAFETY

- CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Isolate spill or leak area immediately for at least 50 to 100 meters (160 to 330 feet) in all directions.
- Keep unauthorized personnel away.
- · Stay upwind.
- Keep out of low areas.
- · Ventilate closed spaces before entering.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- · Structural firefighters' protective clothing will only provide limited protection.

EVACUATION

Large Spill

· Consider initial downwind evacuation for at least 300 meters (1000 feet).

Fire

 If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

EMERGENCY RESPONSE

FIRE

CAUTION: All these products have a very low flash point: Use of water spray when fighting fire may be inefficient.

Small Fires

· Dry chemical, CO, water spray or regular foam.

Large Fires

- · Water spray, fog or regular foam.
- · Do not use straight streams.
- · Move containers from fire area if you can do it without risk.

Fire involving Tanks or Car/Trailer Loads

- Fight fire from maximum distance or use unmanned hose holders or monitor nozzles.
- · Cool containers with flooding quantities of water until well after fire is out.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from the ends of tanks.
- For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn.

SPILL OR LEAK

- ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area).
- · All equipment used when handling the product must be grounded.
- · Do not touch or walk through spilled material.
- . Stop leak if you can do it without risk.
- · Prevent entry into waterways, sewers, basements or confined areas.
- · A vapor suppressing foam may be used to reduce vapors.
- Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers.
- · Use clean non-sparking tools to collect absorbed material.

Large Spills . Dike far ahead of liquid spill for later disposal.

Water spray may reduce vapor; but may not prevent ignition in closed spaces.

FIRST AID

- Move victim to fresh air.
 Call emergency medical care.
- · Apply artificial respiration if victim is not breathing.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- · Wash skin with soap and water.
- · Keep victim warm and quiet.
- . Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.
- Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.

Insert Blue Page picture

Numbered Guide (Orange pages)

GUIDE 137 SUBSTANCES - WATER-REACTIVE - CORROSIVE

NAERG96 NAERG96

SUBSTANCES - WATER-REACTIVE - CORROSIVE

GUIDE 137

POTENTIAL HAZARDS

HEALTH

- TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns, or death.
- Fire will produce irritating, corrosive and/or toxic gases.
- Reaction with water may generate much heat which will increase the concentration of fumes in the air.
- · Contact with molten substance may cause severe burns to skin and eyes.
- · Runoff from fire control or dilution water may cause pollution.

FIRE OR EXPLOSION

- Some of these materials may burn, but none ignite readily.
- May ignite combustibles (wood, paper, oil, clothing, etc.).
- Substance will react with water (some violently), releasing corrosive and/or toxic gases.
- Flammable/toxic gases may accumulate in confined areas (basement, tanks, hopper/tank cars etc.).
- · Contact with metals may evolve flammable hydrogen gas.
- Containers may explode when heated or if contaminated with water.
- Substance may be transported in a molten form.

PUBLIC SAFETY

- CALL Emergency Response Telephone Number on Shipping Paper first. If Shipping Paper not available or no answer, refer to appropriate telephone number listed on the inside back cover.
- Isolate spill or leak area immediately for at least 50 to 100 meters (160 to 330 feet) in all directions.
- Keep unauthorized personnel away.
- · Stay upwind.
- · Keep out of low areas.
- · Ventilate enclosed areas.

PROTECTIVE CLOTHING

- Wear positive pressure self-contained breathing apparatus (SCBA).
- · Wear chemical protective clothing which is specifically recommended by the manufacturer.
- Structural firefighters' protective clothing is recommended for fire situations ONLY; it is not effective in spill situations.

EVACUATION

Spill

See the Table of Initial Isolation and Protective Action Distances for highlighted substances.
 For non-nighlighted substances, increase, in the downwind direction, as necessary, the isolation distance shown under "PUBLIC SAFETY".

Fire

If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all
directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions.

EMERGENCY RESPONSE

FIRE

When material is not involved in fire: do not use water on material itself.
 Small Fires

Drughamical as CO

- Dry chemical or CO₂.
- · Move containers from fire area if you can do it without risk.

Large Fires

 Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only.

Fire involving Tanks or Car/Trailer Loads

- Cool containers with flooding quantities of water until well after fire is out.
- · Do not get water inside containers.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- · ALWAYS stay away from the ends of tanks.

SPILL OR LEAK

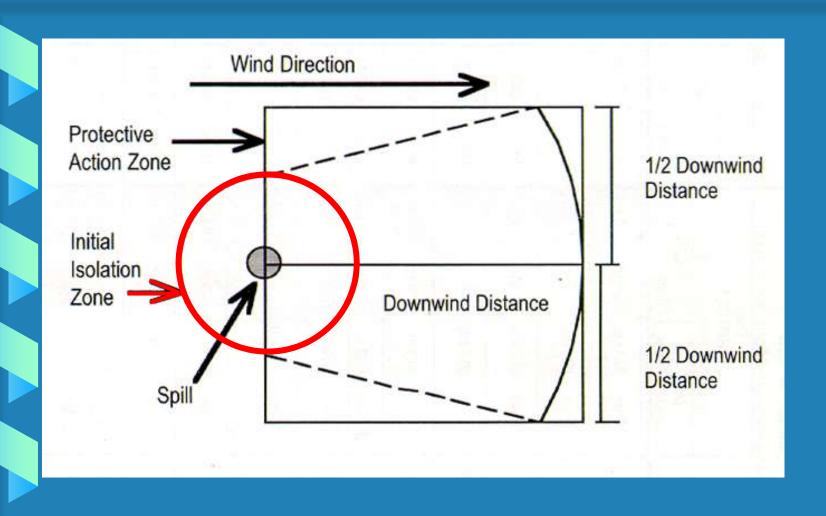
- · Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire.
- Do not touch damaged containers or spilled material unless wearing appropriate protective clothing.
- . Stop leak if you can do it without risk.
- Use water spray to reduce vapors; do not put water directly on leak, spill area or inside container.
- Keep combustibles (wood, paper, oil, etc.) away from spilled material.

Small Spills • Cover with DRY earth, DRY sand, or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain.

- Use clean non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal.
- · Prevent entry into waterways, sewers, basements or confined areas.

FIRST AID

- Move victim to fresh air.
 Call emergency medical care.
- Apply artificial respiration if victim is not breathing.
- Do not use mouth-to-mouth method if victim ingested or inhaled the substance; induce artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device.
- · Administer oxygen if breathing is difficult.
- Remove and isolate contaminated clothing and shoes.
- In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes.
- For minor skin contact, avoid spreading material on unaffected skin.
- Removal of solidified molten material from skin requires medical assistance.
- Keep victim warm and quiet.
- Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed.
- Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.


Table of Initial Isolation and Protective Action Distances (Green pages)

Used for goods considered toxic by inhalation (TIH)

Based on first 30 minutes after spill
Many factors may affect actual distances needed
Divided by Small/Large and Day/Night

- Small spill generally up to 55 gallons
- Daytime atmosphere generally less stable so plume breaks up more quickly

Initial Isolation vs. Protective Action (Green pages 290-291)

Isolation & Protection Distances (Green pages)

TABLE 1 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES

			(Coars o			SPILLS		nadana)	/5	um a lacar e		SPILLS	mal and	
ID No.	Guide	NAME OF MATERIAL	ISOI in all D	rst LATE rections	pe D	PRO rsons Dow AY	TECT triwind du	ring- GHT rs (Miles)	ISC in all C	om a large of First DLATE Directions s (Feet)	p	from many s The PROT eraons Down DAY ters (Miles)	ECT wind durin	ig- GHT
005 °		Ammonia, anhydrous Anhydrous ammonia	30 m	(100 ft)	0.1 km	(0.1 ml)	0.2 km	(0.1 ml)	150 m	(500 ft)	0.8 km	(0.5 ml)	2.0 km	(1.3 mi)
1008 1008	125 125	Boron trifluoride Boron trifluoride, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.4 mi)	300 m	(1000 ff)	1.7 km	(1.1 mi)	4.8 km	(3.0 mi)
1016 1016	119 119	Carbon monoxide Carbon monoxide, compressed	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	200 m	(600 ft)	1.2 km	(im 8.0)	4.8 km	(3.0 mi)
1017 *	124	Chlorine	60 m	(200 ft)	0.4 km	(0.2 mi)	1.5 km	(1.0 ml)	500 m	(1500 ff)	3.0 km	(1.9 ml)	7.9 km	(4.9 mi)
1023 1023	119 119	Coal gas Coal gas, compressed	60 m	(200 H)	0.2 km	(0.1 mi)	0.2 km	(0.1 mi)	100 m	(300 ft)	0.4 km	(0.2 ml)	0.5 km	(0.3 mi)
1026 1026	119 119	Cyanogen Cyanogen gas	30 m	(100 ft)	0.1 km	(0.1 mi)	0.5 km	(0.3 mi)	60 m	(200 ft)	0.4 km	(0.2 mi)	1.7 km	(1.0 mi)
1040 ° 1040 °		Ethylene axide Ethylene axide with Nitrogen	30 m	(100 ft)	0.1 km	(0.1 mi)	0.2 km	(0.1 mi)	150 m	(500 ft)	0.9 km	(0.5 mi)	2.0 km	(1.3 mi)
1045 1045	124 124	Fluorine Fluorine, compressed	30 m	(100 tt)	0.1 km	(0.1 ml)	0.2 km	(0.1 ml)	100 m	(300 ft)	0.5 km	(0.3 mi)	2.3 km	(1.4 ml)
1048	125	Hydrogen bromide, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	200 m	(600 ft)	1.2 km	(im 8.0)	3.9 km	(2.4 mi)
1050 *	125	Hydrogen chloride, anhydrous	30 m	(100 ft)	0.1 km	(0.1 mi)	0.3 km	(0.2 mi)	60 m	(200 ft)	0.3 km	(0.2 mi)	1.3 km	(0.8 mi)
1051	117	AC (when used as a weapon)	60 m	(200 ft)	0.3 km	(0.2 mi)	1.0 km	(im 8.0)	1000 m	(3000 ft)	3.7 km	(2.3 mi)	8.4 km	(5.3 mi)

Table 2

HOW TO USE TABLE 2 - WATER-REACTIVE MATERIALS WHICH PRODUCE TOXIC GASES

Table 2 lists materials which produce large amounts of Toxic Inhalation Hazard (TIH) gases when spilled in water and identifies the TIH gases produced.

The materials are listed by ID number order.

These Water Reactive materials are easily identified in Table 1 as their name is immediately followed by (when spilled in water).

Note: Some Water Reactive materials are also TIH materials themselves (e.g., Bromine trifluoride (1746), Thionyl chloride (1836), etc.). In these instances, two entries are provided in Table 1 for land-based and water-based spills. If the Water Reactive material is NOT a TIH and this materia. Is NOT spilled in water, Table 1 and Table 2 do not apply and safety distances will be found within the appropriate orange guide.

TABLE 2 - WATER-REACTIVE MATERIALS WHICH PRODUCE TOXIC GASES

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) Gas(es)
When Spilled in Water

ID No.	Guide No.	Name of Material	TIH Gas(es) Produced
1162	155	Dimethyldichlorosilane	HCI
1183	139	Ethyldichlorosilane	HCI
1196	155	Ethyttrichlorosilane	HCI
1242	139	Methyldichlorosilana	HCI
1250	155	Methytrichlorosilane	HCI
1295	139	Trichlorosilane	HCI
1298	155	Trimethylchlorosilane	HCI
1305	155P	Vinytrichlorosiane	HCI
1305	155P	Vinytrichlorosilane, stabilized	HCI
1340	139	Phosphorus pentasulfide, free from yellow and white Phosphorus	H,S
1340	139	Phosphorus pentasulphide, free from yellow and white Phosphorus	H,S
1360	139	Calcium phosphide	PH,
1384	135	Sodium dithionite	H,S SO,
1384	135	Sodium hydrosuffite	H,8 SO,
1384	135	Sodium hydrosulphite	H,S 50,
1397	139	Aluminum phosphide	PH,
1419	139	Magnesium aluminum phosphide	PH,
1432	139	Sodium phosphide	PH,
1541	155	Acetone cyanohydrin, stabilized	HCN
1680	157	Potassium cyanide	HCN
1680	157	Potassium cyanide, solid	HCN
1689	157	Sodium cyanide	HCN
1689	157	Sodium cyanide, solid	HCN

Chemical Symbols for TIH Gases:

Br., GL, HBr HCI	Bromine Chlorine Hydrogen bromide Hydrogen chloride	HF HI H,S H,S	Hydrogen fluoride Hydrogen iodide Hydrogen sulfide Hydrogen sulphide	PH, SO, SO,	Nitrogen dioxide Phosphine Sulfur dioxide Sulphur dioxide
HCN	Hydrogen cyanide	NH,	Ammonia	901	oulpour dioxide

20

16

#

Water-Reactive Materials (Green pages 344-350)

TABLE OF WATER-REACTIVE MATERIALS WHICH PRODUCE TOXIC GASES

Materials Which Produce Large Amounts of Toxic-by-Inhalation (TIH) Gas(es)

When Spilled in Water

ID No.	Guide No.	Name of Material			TIH Gas	
1834	137	Sulfuryl chloride		HCI	SO ₃	au Ti
1834	137	Sulphuryl chloride		HCI	SO,	337134
1836	137	Thionyl chloride		HCI	SO ₂	35
1838	137	Titanium tetrachloride		HCI		8
1898	156	Acetyl iodide		HI		
1923	135	Calcium dithionite		H ₂ S	SO ₂	
1923	135	Calcium hydrosulfite		H ₂ S	SO2	
1923	135	Calcium hydrosulphite		H ₂ S	SO ₂	
1939	137	Phosphorus oxybromide		HBr		
1939	137	Phosphorus oxybromide, solid		HBr		
2004	135	Magnesium diamide		NH_3		
2011	139	Magnesium phosphide		PH_3		
2012	139	Potassium phosphide		PH ₃		
2013	139	Strontium phosphide		PH ₃		
2442	156	Trichloroacetyl chloride	-	HCI		- 3

Table 3

HOW TO USE TABLE 3 - INITIAL ISOLATION AND PROTECTIVE ACTION DISTANCES FOR DIFFERENT QUANTITIES OF SIX COMMON TIH GASES

Table 3 lists Toxic Inhalation Hazard materials that may be more commonly encountered.

The selected materials are:

- Ammonia (UN1005)
- Chlorine (UN1017)
- Ethylene oxide (UN1040)
- Hydrogen chloride (UN1050) and Hydrogen chloride, refrige alled liquid (UN2186)
- Hydrogen fluoride (UN1052)
- Sulfur dioxide/Sulphur dioxide (UN1079)

The materials are presented in alphabetical order and provide Initial Isolation and Protective Action Distances for large spills (more than 208 liters or 55 IUS gallons) involving different container types (therefore different volume capacities) for day time and night time

	83	
1	E	
	¥	
	0	
	Ø	
1	迚	
1	놈	
1	8	
	63	
1	S S	
1	SES	
1	8 8	
1	증표	
1	28	Ì
1	₩.	I
ı	E 8	1
ı	등 중	I
ı	문능	I
	용	I
ı	Ž.	ı
ľ	읕	l
ı	9	l
l	20	l
	AT.	ĺ
ľ	3-INT	
	E	
	E E	
	P	
1		

100000000000000000000000000000000000000	ISC	First SOLATE				E.	en PRC	Then PROTECT persons Downwind during	Some C	DAMPAND C	(Ining			
CONTAINER	- NO	in all				DAY	I				2	NIGHT		
	Better	F	72 2	Low wind (< 6 mph = < 10 km/h) (m (Mes)	Mode to	Moderate wind (6-12 mph = 10-20 km/h) &n (Miss)	五次 公五	High wind > 12 mph = > 20 km/h) Kn (Mes)	F A F	Low wind (<6 mpl) = <10 km/h) Km (Miss)	Meder (6-12 70-2	Moderate wind (6-12 mph = 10-20 tm/h)	五元 1	- N D
Rail bank car	300	(1000)	2.3	(1.4)	1,3	(0.5)	10	(0.0)	6.3		2.6	(1,6)	1.3	10.00
Highway tank truck or trailer	22	(400)	5	(9.6)	6.5	(0.3)	0.3	(9.2)	2.6	(1.6)	6.0	(5.0)	0.5	(0.3)
Agricultural nurse tank	8	(200)	9.6	(0.4)	6.3	(0.2)	6.0	(0.2)	15	(6.0)	9.5	(0.3)	0.3	(0.2)
Multiple small cylinders	8	(100)	03	(0.2)	0.2	(0.1)	97	(0.1)	979	(0.5)	50	(0.2)	0.2	(0.1)
CONTAINER	5	1017 (Chlor	ine: L	arge	UN1017 Chlorine: Large Spills								
Rail tank car	1000	(3000)	#	(+,)	98	(5.5)	19.50	(3.4)	ŧ	(2+)	#	(7.1)	77	(4.4)
Highway tank truck or trailer	1000	(3000)	10.8	(8.6)	55	(2.2)	2.9	(1.8)	#	(%)	10.10	(3.4)	2	(2.6)
Multiple ton cylinders	400	(1250)	4	(2.5)	15	(6.9)	2	(0.7)	7.9	(4.9)	2.7	0.70	1.5	(0.9)
Multiple small cylinders or single ton cylinder	992	(800)	2.6	(1.6)	1.0	(0.6)	0.8	(0.5)	89	0.0	0.7	0.0	0.0	(0.6)

BLEVE

BLEVE - SAFETY PRECAUTIONS

Use with caution. The following table gives a summary of tank properties, critical times, critical distances and cooling water flow rates for various tank sizes. This table is provided to give responders some guidance but it should be used with caution.

Tank dimensions are approximate and can vary depending on the tank design and application.

Minimum time to failure is based on severe torch fire impingement on the vapour space of a tank in good condition, and is approximate. Tanks may fail earlier if they are damaged or corroded. Tanks may fail minutes or hours fater than these minimum times depending on the conditions. It has been assumed here that the tanks are not equipped with thermal barriers or water spray cooling.

Minimum time to empty is based on an engulling fire with a properly sized pressure relief valve. If the tank is only partially engulled then time to empty will increase ii.e., if tank is 50% engulled then the tanks will take twice as long to empty). Once again, it has been assumed that the tank is not equipped with a thermal barrier or water spray.

Tanks equipped with thermal barriers or water spray cooling significantly increase the times to failure and the times to empty. A thermal barrier can reduce the heat input to a tank by a factor of ten or more. This means it could take ten times as long to empty the tank through the Pressure Belief Valve (PRV).

Fireball radius and emergency response distance is based on mathematical equations and is approximate. They assume spherical fireballs and this is not always the case.

Two safety distances for public evacuation. The minimum distance is based on tanks that are launched with a small elevation angle (i.e., a few degrees above horizontal). This is most common for horizontal cylinders. The preferred evacuation distance has more margin of safety since it assumes the tanks are launched at a 45 degree angle to the horizontal. This might be more appropriate if a vertical cylinder is involved.

It is understood that these distances are very large and may not be practical in a highly populated area. However, it should be understood that the risks increase rapidly the closer you are to a BLEVE. Keep in mind that the furthest reaching projectiles tend to come off in the zones 45 degrees on each side of the tank ends.

Water flow rate is based on \$\sqrt{capacity (USgal)} = usgalimin needed to cool tank metal.

Warning: the data given are approximate and should only be used with extreme caution. For example, where times are given for tank failure or tank emptying through the pressure relief valve – these times are typical but they can vary from situation to situation. Therefore, never risk life based on these times.

	Cooling water flow rate	Meters (Feet) Literature (Meters (Feet)		32	8			8 3		6	515	316	1
	Coolin	Ultracovin		94.5	1885	107		1 8	8	5	1838	2738	9000
	Preferred restruction distance	S (Faet)		(1007)	(1861)	900	Chart	T IN	1	d design	0220	18124)	Canal III
	Ped			307	100	100	88	683			2250	2200	2300
	Minimum evacuation distance	Maters (Feed)		(305)	(1991)	13880					(Build)	HUBB	(5827)
			_	3	#	417	025		_			1435	1715
	Emergency response distance	Malera/Feet) Motors (Feet)	1.	1	(295)	(386)	133					(1257)	(3499)
		100	18	44	8	E	\$	2	267	3		352	颜
1	Prebail	lan/fee	1		100	88	(115)	186					975
-	Alexander	4	\$	_	18	22	88	4	23	E		2	2
(VOC WITH CAUTION)	Approximate to empty for enguiffing fine	Minutes			27	91	8	#	88	Ħ	49	*	10
1000	Minimum time to failure for servore torch	Mrutes			49	10	in	w	7	-			0
	Properne	Kilograms Lhui	188		(353)	(1754)	(3527)	(2022)	19400)	(37857)	072310)		(2457)
-	S. S.	Kilogra	8		2	800	1600	3300	8800	16900	32800		56000 (123457)
	Length	Peet	8.8		100	6	(181)	(213)	豆	(38.7)	155		(984)
ŀ		Meters (Feet) Meters (Feet)	57		15	2	2	2	6.7	128	8-1 05 77		17.2
	Diameter	(Feed) in	E		在	93	2	(4.1)	#8	(8.8)	8		(10.8)
-	ă		0.3		0.61	198	-	ā	ži	ä	10.73		9
19.00	Capacity	Litters (Sallone)	138.83	-	(154.4)	E E	(1544)	(3088)	(9460)	(21291)	(31652)	STATE OF	(24040)
0	5	Ulbe	100	-	89	300	4000	0000	23000	42000	83330		140000

Page 366

BLEVE

20 16 propare tanks hold 4.1 gallons of propare - 4,216/Gallon

	BLE	VE	
(USE	WITH	CAU	TION)

Ca	pacity	Di	ameter	Lo	ngth		opane Nass	Minimum time to failure for severe torch	Approximate time to empty for enguifing fire		reball	res	ponse tance	evac	imum cuation tance	evac	ferred uation lance	Cooling	g water rate
Litres	(Gallons)	Mete	rs (Feet)	Meters	(Feet)	Kilogr	ame (Lbs)	Minutes	Minutes	Mete	ers (Feet)	Mete	rs (Feet)	Mete	rs (Feet)	Mete	rs (Feet)	Litres/min	USgalini
100	(38.6)	0.3	(1)	1.5	(4.9)	48	(88)	4	8	10	(33)	90	(295)	154	(905)	307	(1007)	94.6	25
400	(154.4)	0.61	(2)	1.5	(4.9)	160	(353)	4	12	16	(53)	90	(295)	244	(801)	488	(1601)	189.3	50
2000	(772)	0.95	(3.2)	3	(9.8)	800	(1784)	5	18	28	(92)	111	(364)	417	[1368)	834	(2735)	424	112
4000	(1544)	- 1	(3.3)	4.9	(16.1)	1600	(3527)	5	20	35	(115)	140	(459)	525	(1722)	1050	(3445)	598	158
8000	(3088)	1.25	(4.1)	6.5	(21.3)	3200	(7055)	6	22	44	(144)	176	(577)	661	(2169)	1323	(4341)	848	224
22000	(8492)	2.1	(6.9)	6.7	(22)	8800	(19400)	7	28	62	(203)	247	(810)	926	(3038)	1852	(6078)	1404	371
12000	(16212)	2.1	(6.9)	11.8	(38.7)	16800	(37037)	7	32	77	(253)	306	(1004)	1149	(3770)	2200	(7218)	1938	512
2000	(31652)	2.75	(9)	13.7	(45)	32800	(72310)	8	40	96	(315)	383	(1257)	1435	(4708)	2200	(7218)	2710	716
0000	(54040)	3.3	(10.8)	17.2	(56.4)	56000 (123457)	9	45	114	(374)	457	(1499)	1715	(5627)	2200	(7218)	3539	935

Page 367

BLEVE

Boiling
Liquid
Expanding
Vapor
Explosion.

E&E

Improvised Explosive Device (IED) SAFE STAND OFF DISTANCE

	Threat Description	Mass	osives (TNT alent)*	The second second	ding lation ince ²	Evac	door untion ances
	Pipe Bomb	5 bs	2.3 kg	70 ft	21 m	850 H	259 m
ent)	Suicide Belt	10 lbs	4.5 kg	90 ft	27 m	1,080 tr	390 m
Equivalent)	Suicide Vest	20 lbs	9 kg	110 tt	34 m	1,360 ft	415 m
	Briefcase/Sultcase Bomb	50 lbs	23 kg	150 ft	46 m	1,850 ft	564 m
TMT)	Compact Sedan	500 lbs	227 kg	320 ft	98 m	1,500 ft	457 m
sives	Sedan	1,000 lbs	454 kg	400 ft	122 m	1,750 t	534 m
oldx	Passenger/Cargo Van	4,000 lbs	1 814 kg	640 ft	195 m	2,750 ft	838 m
High Explosives	Small Moving Van/ Delivery Truck	10,000 lbs	4 536 kg	860 ft	263 m	3,750 H	1 143 m
I	Moving Van/Water Truck	30,000 bs	13 608 kg	1,240 ft	375 m	6,500 ft	1 982 m
	Semitrailer	60,000 lbs	27 216 kg	1,570 ft	475 m	7,000 ft 2	2 134 m

	Threat Description	LPG / Volu		1000	ball eter	Sa Dista	
Gas pane)	Small LPG Tenk	20 lbe/5 gal	9 kg/19 L	40 ft	12 m	160 ft	48 m
Propane	Large LPG Tank	100 lbs/25 gal	45 kg/95 L	69 ft	21 m	276 tt	84 m
Liquefied Petroleum LPG - Butane or Prop	Commercial/ Residential LPG Tank	2,000 lbs/500 gal	907 kg/1 883 L	184 元	56 m	736 ft	224 m
uefiec 3 - Bu	Small LPG Truck	8,000 lbs/2,000 gal	3 630 kg/7 570 L	292 ft	89 m	1,168 ft	356 m
39	Semitanker LPG	40,000 lbs/10,000 gal	18 144 kg/37 850 L	499 ft	152 m	1,996 t	608 m

Bessed on the maximum amount of material that could reasonably fit into a container or vehicle. Variations possible.

Page 372

Improvised Explosive Device (IED)

E & E 47

³ Governed by the ability of an unreinforced building to withstand severe damage or collegee.

³ Governed by the greater of tragment throw distance or gless breakage/falling glass hazard distance. These distances can be reduced for personnel wearing ballistic protection. Note that the pipe borrib, suicide betivest, and briefcase' suitcase borrib are assumed to have a tragmentation characteristic that requires greater standoff distances than an equal amount of explosives in a vehicle.

^{*} Assuming efficient mixing of the flammable gas with ambient air.

Determined by U.S. firelighting practices wherein sale distances are approximately 4 times the fame height. Note that an LPG tank tilled with high explosives would require a significantly greater standoff distance than if it were filled with LPG.

Other (white page) Information

Intro: Table of Initial Isolation and Protective Action Distances 285

Protective Action Decision Factors 287

Protective Actions 288

Background - Isolation and Protective Action Table 289

Glossary 374

Pub Data

Emergency Numbers *(inside back cover)*

White Pages (continued)

∞ "ERG 20	12 USER'S GUIDE"	356

- **⊘ Protective Clothing** 361
- **∂** Fire and Spill Control 363
- O Criminal/Terrorist Use of Chemical/Biological Agents
 368
- **A Improvised Explosive Device (IED)** 372

Questionspp

